Protein Quality Control Disruption by PKCβII in Heart Failure; Rescue by the Selective PKCβII Inhibitor, βIIV5-3

نویسندگان

  • Julio C. B. Ferreira
  • Berta Napchan Boer
  • Max Grinberg
  • Patricia Chakur Brum
  • Daria Mochly-Rosen
چکیده

Myocardial remodeling and heart failure (HF) are common sequelae of many forms of cardiovascular disease and a leading cause of mortality worldwide. Accumulation of damaged cardiac proteins in heart failure has been described. However, how protein quality control (PQC) is regulated and its contribution to HF development are not known. Here, we describe a novel role for activated protein kinase C isoform βII (PKCβII) in disrupting PQC. We show that active PKCβII directly phosphorylated the proteasome and inhibited proteasomal activity in vitro and in cultured neonatal cardiomyocytes. Importantly, inhibition of PKCβII, using a selective PKCβII peptide inhibitor (βIIV5-3), improved proteasomal activity and conferred protection in cultured neonatal cardiomyocytes. We also show that sustained inhibition of PKCβII increased proteasomal activity, decreased accumulation of damaged and misfolded proteins and increased animal survival in two rat models of HF. Interestingly, βIIV5-3-mediated protection was blunted by sustained proteasomal inhibition in HF. Finally, increased cardiac PKCβII activity and accumulation of misfolded proteins associated with decreased proteasomal function were found also in remodeled and failing human hearts, indicating a potential clinical relevance of our findings. Together, our data highlights PKCβII as a novel inhibitor of proteasomal function. PQC disruption by increased PKCβII activity in vivo appears to contribute to the pathophysiology of heart failure, suggesting that PKCβII inhibition may benefit patients with heart failure. (218 words).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PKCβII inhibition attenuates myocardial infarction induced heart failure and is associated with a reduction of fibrosis and pro-inflammatory responses

Protein kinase C βII (PKCβII) levels increase in the myocardium of patients with end-stage heart failure (HF). Also targeted overexpression of PKCβII in the myocardium of mice leads to dilated cardiomyopathy associated with inflammation, fibrosis and myocardial dysfunction. These reports suggest a deleterious role of PKCβII in HF development. Using a post-myocardial infarction (MI) model of HF ...

متن کامل

Agonist Activated PKCβII Translocation and Modulation of Cardiac Myocyte Contractile Function

Elevated protein kinase C βII (PKCβII) expression develops during heart failure and yet the role of this isoform in modulating contractile function remains controversial. The present study examines the impact of agonist-induced PKCβII activation on contractile function in adult cardiac myocytes. Diminished contractile function develops in response to low dose phenylephrine (PHE, 100 nM) in cont...

متن کامل

Protein kinase C beta II upregulates intercellular adhesion molecule-1 via mitochondrial activation in cultured endothelial cells

Activation of protein kinase C (PKC) is closely linked with endothelial dysfunction. However, the effect of PKCβII on endothelial dysfunction has not been characterized in cultured endothelial cells. Here, using adenoviral PKCβII gene transfer and pharmacological inhibitors, the role of PKCβII on endothelial dysfucntion was investigated in cultured endothelial cells. Phorbol 12-myristate 13-ace...

متن کامل

Scaffold hopping for identification of novel PKCβII inhibitors based on ligand and structural approaches, virtual screening and molecular dynamics study.

Protein Kinase C βII (PKCβII) overexpression has been linked to various diabetic microvascular complications viz. retinopathy, neuropathy, and cardiomyopathy. Novel and potent small molecules with preferential selective inhibitory property of PKCβII will be helpful in treatment as well as understanding insight of PKCβII involvement in these complications. Robust 3D hypotheses were developed usi...

متن کامل

Apurinic/apyrimidinic endonuclease 1 inhibits protein kinase C-mediated p66shc phosphorylation and vasoconstriction.

AIMS Phosphorylation of the adaptor protein p66shc is essential for p66shc-mediated oxidative stress. We investigated the role of the reducing protein/DNA repair enzyme apurinic/apyrimidinic endonuclease1 (APE1) in modulating protein kinase CβII (PKCβII)-mediated p66shc phosphorylation in cultured endothelial cells and PKC-mediated vasoconstriction of arteries. METHODS AND RESULTS Oxidized lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012